

- How do ants find the shorter path?
A. Because the time to go and return is shorter
B. Because the pheromon is less diluted

Biological metaphors

- Scientific objective: modelling
- Technical objective: new engineering methods

Strong points of these metaphors:
\rightarrow decentralization
\rightarrow parallelism
\rightarrow flexibility, adaptivity
\rightarrow "robustness" (failures)
\rightarrow auto-organization

Biological metaphors

\(\left.$$
\begin{array}{lll}\text { Brain } & \Rightarrow & \text { Neural networks } \\
\text { Evolution } & \Rightarrow & \begin{array}{l}\text { Genetic Algorithms } \\
\text { Fitness landscapes }\end{array}
$$

Ants \& \Rightarrow \& Swarm Intelligence\end{array}\right\}\)| Protection of computers |
| :--- |
| and networks |

Collective decision without guidance

- How does a collective make a decision among koptions?
A. Simple majority
B. $n \times(n-1) / 2$ discussions
c. Binary tree bottom-up vote
D. Winner-take-all
E. Growing aggregates

Swallows

$\operatorname{Pr}[G(K+1) \mid G(K)]=\frac{\operatorname{Pr}[G(K+1) \& G(K)]}{\operatorname{Pr}[G(K)]}$

$$
\begin{aligned}
& =\frac{\operatorname{Pr}[G(K+1)]}{\operatorname{Pr}[G(K)]} \\
& =1-\left[1-p_{1}(K)\right]^{* \cdot K}
\end{aligned}
$$

$p_{1}(K) \quad$ probability for a bird to join a group of size K at time t.
$p_{1}(K)=A K+B t+C$
$G(K)$ probability for a group to reach at least size K at time t

Swallows

. How do bees exploit a rich food spot?
A. They follow each other
B. They talk to each other
C. They fly to where other bees come from

Four ingredients of self-organization

- Multiple interactions
- Randomness
- Positive Feedback
- Amplification of Fluctuations
- Negative Feedback

Amplification of fluctuations and optimization

Ants collectively select the shorter path.

Amplification of fluctuations and "lock-in"

The double-bridge experiment.

On branch is almost ignored after some time.

Double bridge: model

Probability of choosing branch A
$P_{A}=\frac{\left(k+A_{i}\right)^{n}}{\left(k+A_{i}\right)^{n}+\left(k+B_{i}\right)^{n}}=1-P_{B}$
i : number of ants crossing the bridge
A_{i} :number of ants having gone through branch A
p_{A} plot cockroaches Robot ants-BBC

Average over 200 simulations

$n \approx 2 \quad k \approx 20$

Foragement strategies

- How can we use ants to solve the TSP?
A. Send ants and selects those who visited all cities
B. Prevent ants from visiting the same city twice

Travelling salesperson and virtual ants

■ m agents, each one makes a tour

- memory of visited cities
$\square d_{i j}=$ distance between city i and city j
- $\tau_{i j}=$ virtual pheromon on link (i,j)
- When in city i, the probability of going from city i to city j is proportional to $\left(\tau_{i j}\right)^{\alpha}\left(d_{i j}\right)^{-\beta}$
- At the end of a tour of length L, each agent reinforces the links it went through with a quantity proportional to $1 / L$

■ Virtual pheromon evaporates : $\tau \rightarrow(1-\rho) \tau$

Other applications

The same method may be applied to any allocation problem
ϕ Traveling salesman problem
\& Quadratic assignment problem
¢ Job-shop scheduling
${ }_{\phi}$ Graph coloring

- Vehicle scheduling

AS-TSP : Traveling salesman problem

	Best tour	Average	Std. Dev.
Simulated Annealing	422	459.8	25.1
Tabu search	420	420.6	1.5
AS-TSP	420	420.4	1.3

QAP: quadratic assignment problem

- Allocate n activities to n locations. $\pi(i)$: activity assigned to i.
- Find a permutation that minimizes a cost function by taking into account the flow of exchanges beetween activities

$$
\pi_{o p t}=\arg \min _{\pi \in \Pi(n)} C(\pi) \quad C(\pi)=\sum_{i, j=1}^{n} d_{i j} f_{\pi(i) \pi(j)}
$$

	Nugent (7)	Nugent (12)	Nugent (15)	Nugent (20)	Nugent (30)	Elshafei (19)	Krarup (30)
SA	148	578	1150	2570	6128	17937024	89800
TS	148	578	1150	2570	6124	17212548	90090
GA	148	588	1160	2688	6784	17640584	108830
ES	148	598	1168	2654	6308	19600212	97880
SC	148	578	1150	2570	6154	17212548	88900
AS-QAP	$\mathbf{1 4 8}$	$\mathbf{5 7 8}$	$\mathbf{1 1 5 0}$	$\mathbf{2 5 9 8}$	$\mathbf{6 2 3 2}$	$\mathbf{1 8 1 2 2 8 5 0}$	$\mathbf{9 2 4 9 0}$
AS-LS	148	578	1150	2570	6146	17212548	89300
AS-SA	148	578	1150	2570	6128	17212548	88900

QAP: quadratic assignment problem

Potential Vectors

$$
d_{i}=\sum_{j=1}^{n} d_{i j} \quad f_{h}=\sum_{k=1}^{n} f_{h k} \quad E=\bar{d} \cdot \bar{f}^{T}
$$

- An initial solution is constructed using the minimax rule:

The reminding location with lowest potential receives the reminding activity with highest potential.

- The ant algorithm is applied: it goes through locations with increasing potential, with:
$\eta_{i j}=d_{i} \cdot f_{j}$

$$
\Delta \tau_{i j}^{k}=Q / C^{k}(t) \text { if ant } k \text { chose allocation }(i, j)
$$

Robustness and flexibility

- Robustness : A system is robust if it keeps functioning efficiently even if some of its constituent parts fail.

Flexibility : A system is said to be flexible if it can efficiently function when external conditions change.

Robustness and flexibility

Robustness : For example, an assembly line is robust if production continues when a machine fails. Degree of Robustness: How many machines may break down without affecting production?

Flexibility : an assembly line is flexible if it can react to changing demands. Degree of flexibility : What is the reaction time, and what amount of fluctuation can it tolerate?

Dynamics

- Dynamicity: change of the system's internal characteristics or change of external conditions.
(t is sometimes impossible to apply an exhaustive method fast enough. Optimization must be dynamic.
- Variations may be so rapid that optimization becomes less important than fulfulling the task.

Optimization with artificial ants

Why does it work at all?

* Fundamental principle:
reinforcement of partial solutions
global dissipation.
- Other important principle: keep a distributed trace of past exploration. Distributed memory of alternate solutions.

Similar approaches

Neural networks

* Population-based incremental learning PBIL (Baluja \& Caruana 1995)
*it-based simulated crossover (Syswerda 1993)
Mutual Information Maximization for Input
Clustering MIMIC (De Bonet et al. 1997)
Bayesian Networks

Routing in telephone networks

Routing : Device that processes the next direction of a message at a node of the network

- Messages should reach their destination

Time needed to go from the source to the destination must be kept minimal

- Characteristics of the trafic change constantly: routing must adapt

Wy routing?

If node A sends a message to node B, the message has to go through a set of intermediate nodes because A and B are not directly connected. One possible shortest path for the message is the one indicated by thick lines and arrows, which takes the message from A to B in 5 steps. If, however, node N breaks down or is highly congested, the message needs to be rerouted dynamically toward a slightly longer route that goes through nodes N' and N". Although it now takes 6 hops for the message to be transmitted from A to B, the actual transmission time will be reduced and the message will be less likely to be lost.

Routing

- Switching nodes hold routing tables that direct messages to other nodes depending on their final destination.

Routing tables are regularly updated by a centralized mechanism:
\rightarrow Requires centralization and increases traffic
\rightarrow Maladpated to large networks
\rightarrow Failure at the central controler spreads all over the network
\rightarrow Communications networks are distributed,
spatially extented, dynamical and unexpecteed.

- How Can ants be used in a communication network?
A. Messages play the role of ants and lay down "pheromon".
B. Ants are auxiliary messages informing about their origin.

Ants in the network!

Ant agents are launched in the network.
An agent updates routing tables by considering its source as a destination.
ϕ "If you are going to my source, go first to the node I am coming from (if I am 'young' enough)"
\& Or "Don't go there (if I am old)".
Its influence diminishes with "age".
Agents are made artificially older at overload nodes.

Ants in the network!

Example of network and of routing table.

Destination nodes

| | 1 | 2 | 3 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |

Ants in the network!

Schoonderwoerd et al. (1996)
$r_{n, d}^{i}(t) \quad$ Probability, at node i, when heading to node d, of choosing n as next node.
$r_{n_{0}, s}^{i}(t+1)=\frac{r_{n_{0}, s}^{i}(t)+\delta r}{1+\delta r}$
$r_{n, s}^{i}(t+1)=\frac{r_{n, s}^{i}(t)}{1+\delta r}, \quad n \neq n_{0}$
$\delta r=\frac{a}{T}+b$
T: ant's age
$D=c \cdot e^{-d \cdot S}$
D: delay;
S: remaining capacity of the node

- Division of labor

When cleaning services are on strike, could we imagine that senior executives clean the litter?
A. Introduce a small probability for them to do so.
B. Let them do so systematically, but with a higher threshold.

From division of labor to scheduling

- Scheduling technique inspired by task allocation in a honeybee colony: individual bees are specialized in certain tasks, which depend on their age, but they can perform other tasks if needed. For example, a nurse bee can become a forager bee if there is not enough food coming into the hive.
- Our assumption is that a bee performs the tasks for which it is specialized unless it perceives that other tasks badly need to be performed.
- To allocate trucks coming out of an assembly line to paint booths in a truck factory, each paint booth is considered an factory, each paint booth is considered an needed, the paint booth can change its color (though it's costly).
- The system minimizes paint changes and can cope with alitches.

Response curves: differential thresholds

Model

Probability of performing the task for a stimulus s :

$$
T_{\theta}(s)=\frac{s^{n}}{s^{n}+\theta^{n}}
$$

$$
T_{\theta}(s)=1-\mathrm{e}^{-s / \theta}
$$

$$
\mathrm{n}=2
$$

$$
\theta_{\text {(task } 1, \text { major })}=8
$$

$\theta($ task 1, minor) $=1$
$P_{\text {(active->inactive) }}=0.2$ (per time step)
stimulus $_{(t+1)}=$ stimulus $_{(t)}+\left(1-\left(3 \quad \frac{N_{\text {(active) }}}{N_{(\text {population })}}\right)\right)$

- How can we account for different thresholds in non-polymorphic species
A. age-based polymorphism
B. performing task lowers threshold

Threshold reinforcement

Fixed thresholds cannot account for genesis of specialization in non-polymorphic species.

Although tasks are eventually completed when the system is perturbed, there may be an irreversible degradation of the system's performance: stimulus intensity remains high.

Threshold reinforcement: the more an agent performs a task, the lower its response threshold. New specialists can be generated in response to perturbations

Threshold reinforcement: application

Mail retrieval in a city:

- N agents
- City divided into zones
- Each agent has response thresholds for all zones
- Agent responds to demand from a zone when stimulus exceeds threshold
- Current working zone's threshold is reinforced, as well as neighboring zones' thresholds. All other thresholds decaySpecialization and robustness

Cemetery formation in Messor sancta

Workers form piles of their dead nestmates' corpses -literally cemeteriesto clean up their nests.

If corpses are randomly distributed in space at the beginning of the experiment, the workers form clusters within a few hours (figure shows the initial state with 1500 corpses, 2 hours, 6 hours, and 26 hours after the beginning of the experiment).
small clusters of items grow by attracting workers to deposit more items.

Brood sorting follows same type of logic: an ant picks up and drops an item according to the number of similar surrounding items.

- How can we bring ants to sort objects?
A. Pick object when isolated
B. Drop object when other objects in the vicinity
C. Push objects until they collide into another

Clustering in ants

- An isolated item is more likely to be picked up by an unladen agent:

$$
P_{p}=\left[k_{1} /\left(k_{1}+f\right)\right]^{2}
$$

where $\mathrm{f}=$ density of items in neighborhood

A laden agent is more likely to drop an item $\mathrm{n}_{\text {- }}$. to other items:

$$
P_{d}=\left[f /\left(k_{2}+f\right)\right]^{2}
$$

From clustering to sorting

* The same principle can be applied to sort items of several types (i=1,...,n).
f is replaced by f_{i}, the fraction of type i items in the agent's neighborhood:

$$
\begin{aligned}
& P_{p}(i)=\left[k_{1} /\left(k_{1}+f_{i}\right)\right]^{2} \\
& P_{d}(i)=\left[f /\left(k_{2}+f_{i}\right)\right]^{2}
\end{aligned}
$$

From sorting to data analysis

- If items are described by real-valued attributes (points in R^{n}), the same principle can still be applied: f is now replaced by a normalized distance between the item carried by the agent and items in the agent's neighborhood.

$$
f\left(o_{i}\right)=\left\{\begin{array}{cl}
\frac{1}{s^{2}} \sum_{o_{j} \in \operatorname{Neigh}_{(\mathrm{sxs})}(r)}\left[1-\frac{d\left(o_{i}, o_{j}\right)}{\alpha}\right] & \text { if } f>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

\Rightarrow Items will end up being next to items with close attributes.
α contrôle la discrimination entre objets

Graph unfolding

Same method can also be applied to graph drawing. Complex networks of relationships arise in many contexts and can often be represented as graphs. Drawing a graph in the plane facilitates interpretation by observer.

Vertices in a graph have attributes: the vertices they are connected to. A good distance between vertices is the number of adjacent vertices they have in common.

Example: random graphs with clusters.

Graph unfolding

$f\left(v_{i}\right)=\left\{\begin{array}{cl}\frac{1}{s^{2}} \sum_{v_{j} \in \operatorname{Neigh} h_{(S s)}(r)}\left[1-\frac{d\left(v_{i}, v_{j}\right)}{\alpha}\right] & \text { if } f>0 \\ 0 & \text { otherwise }\end{array}\right.$

Graph unfolding

- Which distance use to unfold a graph?
A. \#common neighbours / \#neighbours
B. \# different neighbours / \#neighbours

Stigmergy

Diffusion

$\partial_{t} H=-k H+D_{H} \nabla^{2} H$

Reaction-diffusion model of the royal chamber construction

$H(r, t)$ Pheromon concentration in r at time t
P quantity of active material
C density of laden termites
Φ laden termite entering flow
$T(x, y)=e^{-\left[\left(\left(x-x_{0}\right) / \lambda_{x}\right)^{2}+\left(\left(y-y_{0}\right) / \lambda_{y}\right)^{2}\right]}$ template
$\partial_{t} H=k_{2} P-k_{4} H+D_{H} \nabla^{2} H$
$\partial_{t} C=\Phi-k_{1} C+D_{C} \nabla^{2} C-\gamma \nabla(C \nabla H)-v \nabla(C \nabla T)$
$\partial_{t} P=k_{1} C-k_{2} P$

Self-organization in the presence of templates

$U:$ density of unladen ants
$L:$ density of laden ants
$S:$ grain density
$P(r):$ influence of the template to pick grain
$P(r) F(S) U S:$ transition rate U--> L
$F(S):\left(g_{1}+g_{2} S\right)^{-1}$ perception of grain density by ants
$D(r) G(S) L(1-S / K):$ transition rate L--> U
$D(r):$ influence of the template to drop grain
$K:$ max. density
$G(S):\left(g_{I}+g_{2} S\right)$ ant's perception
$\partial_{t} S=D(r) G(S) L\left(1-\frac{S}{K}\right)-P(r) F(S) S U$

Morphogenesis

Turing Démo d'Arcy

Model of Building in Social Wasps

- Agents move randomly on a 3D grid of sites.

An agent deposits a brick every time it finds a stimulating configuration.

- Rule table contains all such configurations. A rule table defines

Rule space is very large.

Simulation model of wasp building

Most algorithms generate structureless shapes.
But some produce "structured" architectures.
Structured architectures:

- Usually modular
- Most complex patterns have large modules
- Produced by specific algorithms
- Convergence to similar shape in all runs
- Compact
- Take time to generate

[^0]

Genetic algorithm to explore rule space

Some of the characteristics of "structured" architectures can be formalized (graph associated with the building process) and quantified.

Quantification is useful to define a fitness function. Heuristic fitness correlates well with observers' notion of structure. A GA has been run with this fitness.

[^0]: Stimulating configurations corresponding to different building stages must not overlap

