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Robot ants - BBC

SwarmSwarm intelligenceintelligence

 Examples
 Ant colony: Shortest path

ants_1 ants

4

 How do ants find the shorter path?
A. Because the time to go and return is shorter
B. Because the pheromon is less diluted
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Biological metaphorsBiological metaphors

 Strong points of these metaphors: 

 decentralization
 parallelism
 flexibility, adaptivity
 "robustness" (failures)
 auto-organization

 Scientific objective: modelling

 Technical objective: new engineering methods

6

Brain Neural networks

Evolution Genetic Algorithms

Ants Swarm Intelligence

Immune Protection of computers
System and networks

Fitness landscapes

Biological metaphorsBiological metaphors
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Collective Collective decisiondecision withoutwithout guidanceguidance

 How does a collective make a decision
among k options?

A. Simple majority
B. n  (n  1)/2 discussions

C. Binary tree bottom-up vote
D. Winner-take-all
E. Growing aggregates

8
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Collective TransistorCollective Transistor
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Kummer, H. (1997). In quest of the sacred baboon: 
A scientist's journey.
Princeton University Press. 
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Social insectsSocial insects

12

 How do bees exploit a rich food spot?
A. They follow each other
B. They talk to each other
C. They fly to where other bees come from
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von Frisch, K. (1967). 
The dance language and orientation of bees.
Harvard: Harvard University Press. 

Kirchner, W. H. & Towne, W. F. (1994). 
The sensory basis of the honeybee's dance 
language. 
Scientific American, 6, 52-59. 

Bee Dance (Waggle Dance) Dancing Honeybee Using Vector Calculus to Communicate

14

Amplification of fluctuations and "lockAmplification of fluctuations and "lock--in"in"

model

measures

Dancing Honeybee
Dancing Honeybee link

Bee dance
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Amplification et evaporationAmplification et evaporation

source 1

source 2

source 3

nest

a b

c d

 The virtual colony exploits 
closest resources first. 

When closest food sources are 
exhausted, it starts to exploit 
farther sources.

16

Four ingredients of selfFour ingredients of self--organizationorganization

 Multiple interactions

 Randomness

 Positive Feedback 
 Amplification of Fluctuations

 Negative Feedback
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Amplification of fluctuations Amplification of fluctuations 
and optimizationand optimization

Ants collectively select  the shorter path.

Nest

2
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food Foraging 
area

Foraging 
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Nest
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Amplification of fluctuations Amplification of fluctuations 
and "lockand "lock--in"in"
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 The double-bridge 
experiment. 

 On branch is almost 
ignored after some 
time.
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 Probability of choosing branch A

Double bridge: modelDouble bridge: model
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pA plot cockroaches

Robot ants – BBC
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ForagementForagement strategiesstrategies
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When moving forward: lay down one pheromon unit (max 1000)
When returning: 10 units (max 300)
 Evaporation: 1/30
 Probability of moving (pm) and of choosing direction (pl, pr)
 Maximum 20 ants per site

concentration 1
with pr. ½

concentration 400
with pr. 1/100
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PathPath searchsearch in a in a 
graphgraph

Formica 
lugubris
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Travelling salespersonTravelling salesperson
and virtual antsand virtual ants

 N cities
 distance function d between cities
 Find a tour, so that

 (1) each city is visited once

 (2) total distance is minimum

 NP-hard problem

 Classical benchmarking problem
for optimization methods

Seattle

San  
Francisco

Salt Lake City

Los Angeles

Las Vegas

San Diego Phoenix Albuquerque

Houston

Oklahoma  
City

Indianapolis

Miami

New York

Atlanta

Boston

24

 How can we use ants to solve the TSP?
A. Send ants and selects those who visited all 

cities
B. Prevent ants from visiting the same city twice
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 How can we use ants to solve the TSP?
More pheromon on shorter circuits 

A. Because of fixed total amount of pheromon
B. Because of shorter travel time

26

 How can we use ants to solve the TSP?
A. Ants rely on pheromons only
B. Ants are sensitive to city distances



Collective Intelligence novembre 23

J-L. Dessalles – ParisTech ENST – www.enst.fr/~jld 14

27

 m agents, each one makes a tour

 memory of visited cities

dij= distance between city i and city j

 ij= virtual pheromon on link (i,j)

When in city i, the probability of going from city i to city j is
proportional to (ij) (dij)-

 At the end of a tour of length L, each agent reinforces the links it
went through with a quantity proportional to 1/L

 Virtual pheromon evaporates :   

Salt Lake City
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A
lb

uq
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?

Travelling salespersonTravelling salesperson
and virtual antsand virtual ants

28

AntAnt systemsystem

 Not only do the ants find
a very good solution to 
the problem, they also
maintain a pool of 
alternate solutions.

 In case a city or a link is
added or disappears, 
the system can quickly
reorganize itself and find
a good solution to the 
new situation.
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 Role of pheromon evaporation
A. Avoids local optima
B. Avoids saturation

30

Other applicationsOther applications

The same method may be applied to 
any allocation problem

 Traveling salesman problem
 Quadratic assignment problem
 Job-shop scheduling
 Graph coloring
 Vehicle scheduling
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ASAS--TSP : Traveling TSP : Traveling salesmansalesman problemproblem

 Best tour Average Std. Dev. 

Simulated Annealing 422 459.8 25.1 
Tabu search 420 420.6 1.5 
AS-TSP 420 420.4 1.3 
 

32

QAP: QAP: quadraticquadratic assignmentassignment problemproblem

Nugent
(7)

Nugent
(12)

Nugent
(15)

Nugent
(20)

Nugent
(30)

Elshafei
(19)

Krarup
(30)

SA 148 578 1150 2570 6128 17937024 89800
TS 148 578 1150 2570 6124 17212548 90090
GA 148 588 1160 2688 6784 17640584 108830
ES 148 598 1168 2654 6308 19600212 97880
SC 148 578 1150 2570 6154 17212548 88900
AS-QAP 148 578 1150 2598 6232 18122850 92490
AS-LS 148 578 1150 2570 6146 17212548 89300
AS-SA 148 578 1150 2570 6128 17212548 88900

 Allocate n activities to n locations.   (i): activity assigned to i.

 Find a permutation that minimizes a cost function by taking into
account the flow of exchanges beetween activities

 
 


C

n
opt 

 minarg      



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jiij fdC

1,

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QAP: QAP: quadraticquadratic assignmentassignment problemproblem

T
fdE 




n

j
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
n

k
hkh ff

1

Potential Vectors

 An initial solution is constructed using the minimax rule: 
The reminding location with lowest potential receives the reminding
activity with highest potential.

 The ant algorithm is applied: it goes through locations with increasing
potential, with:

jiij fd 

   jiktCQ kk
ij , allocation chose ant  if  

34

Robustness and flexibilityRobustness and flexibility

 Robustness : A system is robust if it keeps functioning
efficiently even if some of its constituent parts fail.

 Flexibility : A system is said to be flexible if it can efficiently
function when external conditions change.
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 Robustness : For example, an assembly line is robust if production 
continues when a machine fails. Degree of Robustness: How many 
machines may break down without affecting production ?

 Flexibility : an assembly line is flexible if it can react to changing 
demands. Degree of flexibility : What is the reaction time, and what 
amount of fluctuation can it tolerate?

Robustness and flexibilityRobustness and flexibility

36

DynamicsDynamics

 Dynamicity: change of the system’s internal characteristics or 
change of external conditions.

 It is sometimes impossible to apply an exhaustive method fast
enough. Optimization must be dynamic. 

 Variations may be so rapid that optimization becomes less
important than fulfulling the task.
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Optimization with artificial antsOptimization with artificial ants

Why does it work at all?

 Fundamental principle: 
reinforcement of partial solutions
global dissipation. 

 Other important principle: keep a distributed trace of past 
exploration. Distributed memory of alternate solutions. 

38

Similar approachesSimilar approaches

 Neural networks

 Population-based incremental learning PBIL 
(Baluja & Caruana 1995)

 Bit-based simulated crossover (Syswerda 1993)

 Mutual Information Maximization for Input 
Clustering MIMIC (De Bonet et al. 1997)

 Bayesian Networks
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Routing in telephone networksRouting in telephone networks

 Routing : Device that processes the next direction of a message at
a node of the network

 Messages should reach their destination

 Time needed to go from the source to the destination must be kept
minimal 

 Characteristics of the trafic change constantly: routing must adapt

40

WyWy routingrouting ??

A

B
N

N'

N''

If node A sends a message to node B, the 
message has to go through a set of intermediate 
nodes because A and B are not directly 
connected. One possible shortest path for the 
message is the one indicated by thick lines and 
arrows, which takes the message from A to B in 
5 steps. If, however, node N breaks down or is 
highly congested, the message needs to be 
rerouted dynamically toward a slightly longer 
route that goes through nodes N’ and N’’. 
Although it now takes 6 hops for the message to 
be transmitted from A to B, the actual 
transmission time will be reduced and the 
message will be less likely to be lost.
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RoutingRouting

 Switching nodes hold routing tables that direct 
messages to other nodes depending on their final 
destination. 

 Routing tables are regularly updated by a centralized
mechanism:

 Requires centralization and increases traffic
 Maladpated to large networks
 Failure at the central controler spreads all over 
the network
 Communications networks are distributed, 
spatially extented, dynamical and unexpecteed.

NTTnet

42

 How can ants be used in a communication 
network?
A. Messages play the role of ants and lay down 

"pheromon".
B. Ants are auxiliary messages informing about 

their origin. 
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Ants in the network!Ants in the network!

 Ant agents are launched in the network. 

 An agent updates routing tables by considering its source as a 
destination.

 "If you are going to my source, go first to the node I am
coming from (if I am ‘young’ enough)"
 Or "Don’t go there (if I am old)".

 Its influence diminishes with "age".

 Agents are made artificially older at overload nodes. 

44

Example of network and of routing table. 

Probability of 
directions for an ant
going to node 2.

Probabilities updated
by an ant coming from
node 5.

Messages, contrary to ants, 
travel in the network 
deterministically, always
following highest
probability.

Ants in the network!Ants in the network!

demo
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Probability, at node i, when heading to 
node d, of choosing n as next node.

   

   
0

,
,

,
,

    , 
1

1

1
1 0

0

nn
r

tr
tr

r

rtr
tr

i
sni

sn

i
sni

sn
















b
T

a
r  T: ant’s age

SdecD  D: delay; 
S: remaining capacity of the node

Schoonderwoerd et al. (1996)

Ants in the network!Ants in the network!
46

Model networkModel network

Model network used
in simulations: BT
interconnection network.

(Little game: where do
you think London is?)

Average call failures Std. Dev.
Shortest path 12.57 2.16
Mobile agents 9.19 0.78
Improved mobile agents 4.22 0.77
ABC without noise 1.79 0.54
ABC with noise 1.99 0.54

Performance of ABC (ant-based control):
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ResultsResults ((withwith AntNetAntNet))

Poisson traffic on NSFNET, various interarrival times.

OSPF: Open Shortest Path First (current Internet routing algorithm),
SPF: Shortest Path First, BF: Bellmann-Ford, [P]QR: [Predictive] Q-Routing

48

ResultsResults ((withwith AntNetAntNet))

Hot spot
superim-
posed to
Poisson
traffic.

Moving
average
over 10s.
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 Division of labor
When cleaning services are on strike, could we

imagine that senior executives clean the litter?
A. Introduce a small probability for them to do so.
B. Let them do so systematically, but with a 

higher threshold.

50

From division of labor to schedulingFrom division of labor to scheduling

 Scheduling technique inspired by task 
allocation in a honeybee colony: individual 
bees are specialized in certain tasks, which 
depend on their age, but they can perform 
other tasks if needed. For example, a nurse 
bee can become a forager bee if there is 
not enough food coming into the hive. 

 Our assumption is that a bee performs the 
tasks for which it is specialized unless it 
perceives that other tasks badly need to be 
performed. 

 To allocate trucks coming out of an 
assembly line to paint booths in a truck 
factory, each paint booth is considered an 
artificial bee specialized in one color. But if 
needed, the paint booth can change its 
color (though it’s costly). 

 The system minimizes paint changes and 
can cope with glitches.

1 32

I won’t do it unless
nobody else does it

I take
 the job!
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ColonyColony--levellevel flexibilityflexibility
in in twotwo antant speciesspecies ((PheidolePheidole))
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Augmentation de la proportion de majors par retrait expérimental des minors
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ResponseResponse curvescurves: : 
differentialdifferential thresholdsthresholds
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ModelModel

  nn

n

s
ssT
 

    


ssT  e1  

= prob. of encountering an item

       1lne111 NNNP

(task 1, major) = 8 

(task 1, minor) = 1

P(active->inactive) = 0.2  (per time step)

stimulus(t+1) = stimulus(t) + (1 - ( ) )
N (active)

N (population)

n = 2

Probability of performing the task for a stimulus s:

plot seuils

54

 How can we account for different thresholds
in non-polymorphic species
A. age-based polymorphism
B. performing task lowers threshold
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ThresholdThreshold reinforcementreinforcement

Fixed thresholds cannot account for genesis of
specialization in non-polymorphic species.

Although tasks are eventually completed when
the system is perturbed, there may be an irreversible
degradation of the system's performance: stimulus
intensity remains high.

Threshold reinforcement: the more an agent 
performs a task, the lower its response
threshold. New specialists can be generated in
response to perturbations.

56

ThresholdThreshold reinforcementreinforcement: application: application

Mail retrieval in a city:

- N agents
- City divided into zones
- Each agent has response thresholds for all zones
- Agent responds to demand from a zone when 

stimulus exceeds threshold
- Current working zone's threshold is reinforced, 
as well as neighboring zones' thresholds. All
other thresholds decay

Specialization and robustness
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Cooperative transportCooperative transport

 Observed in several ant species: a 
single ant cannot retrieve a large prey, 
nestmates are recruited to help. Then, 
during an initial period of up to several
minutes, the ants change position and 
alignment around the prey without
making progress, until eventually the 
prey can be moved toward the nest. 

 Ron Kube and Hong Zhang have 
reproduced this emergent coordination 
with a swarm of very simple robots. 
Videotaped experiments worth viewing
at http://www.cs.ualberta.ca/~kube/. 

 Not the most efficient way of pushing
a box. But, because of the simplicity
of the robots, promising in the 
perspective of miniaturization and low-
cost robotics.

Box pushing Réunion-ants2

Réunion-ants1

58

Cemetery formation Cemetery formation 
in in MessorMessor sanctasancta

 Workers form piles of their dead 
nestmates’ corpses –literally cemeteries–
to clean up their nests. 

 If corpses are randomly distributed in 
space at the beginning of the 
experiment, the workers form clusters 
within a few hours (figure shows the 
initial state with 1500 corpses, 2 hours, 
6 hours, and 26 hours after the 
beginning of the experiment). 

 Small clusters of items grow by 
attracting workers to deposit more 
items.

 Brood sorting follows same type of logic: 
an ant picks up and drops an item 
according to the number of similar 
surrounding items.
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 How can we bring ants to sort objects?

A. Pick object when isolated
B. Drop object when other objects in the vicinity
C. Push objects until they collide into another

60

ClusteringClustering in in antsants

 An isolated item is more likely to be picked up by 
an unladen agent:

Pp=[k1/(k1+f)]2

where f=density of items in neighborhood

 A laden agent is more likely to drop an item next
to other items:

Pd=[f/(k2+f)]2

plot probabilities
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Cemetery formation Cemetery formation 
in in MessorMessor sanctasancta

62

FromFrom clusteringclustering to to sortingsorting

 The same principle can be
applied to sort items of several
types (i=1,...,n).

 f is replaced by fi, the fraction 
of type i items in the agent's
neighborhood: 

Pp(i)=[k1/(k1+fi)]2

Pd(i)=[f/(k2+fi)]2
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From brood sorting to data analysisFrom brood sorting to data analysis

 Artificial ants move around 
and pick up and drop 
“clients” according to how 
many similar clients there 
are in the neighborhood. 

 The measure of how similar 
two clients are is based on a 
natural distance for each of 
the attributes. For example, 
for attributes such as marital 
status or gender, a similarity 
value of 1 is assigned to pairs 
having the same value of the 
attribute, and a value of 0 to 
pairs with different values. 
For age, the smaller the age 
difference the higher the 
similarity. 

 Emergent clusters obtained 
and visualized.

1

2

3

Single
Male 
Age: 20
Banking product: interest checking 
live with parents

Single
Male 
Age: 20
Banking product: interest checking 
live with parents

Married
Male 
Age: 44
Banking product: savings 
Tenant

Married
Male 
Age: 44
Banking product: savings 
Tenant

Married
Female 
Age: 57
No mortgage 
Home owner

Married
Female 
Age: 57
No mortgage 
Home owner

64

FromFrom sortingsorting to data to data analysisanalysis

• If items are described by real-valued attributes (points in Rn), the 
same principle can still be applied: f is now replaced by a 
normalized distance between the item carried by the agent and 
items in the agent's neighborhood.

Items will end up being next to items with
close attributes. 
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 Same method can also be applied to graph drawing. Complex
networks of relationships arise in many contexts and can often
be represented as graphs. Drawing a graph in the plane 
facilitates interpretation by observer.

 Vertices in a graph have attributes: the vertices they are 
connected to. A good distance between vertices is the number of 
adjacent vertices they have in common. 

 Example: random graphs with clusters.

dépliement

Graph Graph unfoldingunfolding
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Graph Graph unfoldingunfolding
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 Which distance use to unfold a graph?

A. #common neighbours / #neighbours
B. # different neighbours / #neighbours

Graph Graph unfoldingunfolding
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Graph Graph unfoldingunfolding
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wi = position of vi on the plane

Graph Graph unfoldingunfolding
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StigmergyStigmergy

Theraulaz, G., Bonabeau, E. & Deneubourg, J.-L. (1998). 
The origin of nest complexity in social insects. 
Complexity, 3 (6), 15-25. 
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DiffusionDiffusion

HDHkH Ht
2
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 trH , Pheromon concentration in r at time t

P quantity of active material

C density of laden termites

 laden termite entering flow

      2
0

2
0),( yx yyxxeyxT   template

Macrotermes subhyalinus

ReactionReaction--diffusion modeldiffusion model
of the royal of the royal chamberchamber constructionconstruction

Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Franks, N. R., 
Rafelsberger, O., Joly, J.-L. & Blanco, S. (1998). 
A model for the emergence of pillars, walls and royal chambers in termite nests. 
Philosophical Transactions of the Royal Society B, 353 (1375), 1561-1576. 
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 trH ,

HDHkPkH Ht
2

42 

   TCvHCCDCkC Ct  2
1

PkCkPt 21 

Pheromon concentration in r at time t

P quantity of active material

C density of laden termites

 laden termite entering flow

      2
0

2
0),( yx yyxxeyxT   template

Macrotermes subhyalinus

ReactionReaction--diffusion modeldiffusion model
of the royal of the royal chamberchamber constructionconstruction
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       SUSFrP
K

S
LSGrDSt 






  1

U :  density of unladen ants

S  :  grain density

L  :  density of laden ants

P(r) :  influence of the template to pick grain

D(r) :  influence of the template to drop grain

K  :  max. density

G(S) :  (g1+g2S)  ant’s perception

F(S) :  (g1+g2S)-1  perception of grain density by ants

P(r)F(S)US :  transition rate U --> L

D(r)G(S)L(1-S/K) :  transition rate L --> U

Leptothorax albipennis

SelfSelf--organizationorganization in the in the presencepresence of of templatestemplates
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MorphogenesisMorphogenesis

Turing Démo d’Arcy



Collective Intelligence novembre 23

J-L. Dessalles – ParisTech ENST – www.enst.fr/~jld 40

79

Thaler - L'organisation secrète des fourmis

80
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Wasp nest building and selfWasp nest building and self--assemblyassembly

From a model 
of wasp nest 

building to self-
assembly 

Termites inspire robot builders1

Termites inspire robot builders2

See also: Wyss Institute

82

Model of Building in Social WaspsModel of Building in Social Wasps

 Agents move randomly on a 3D 
grid of sites.

 An agent deposits a brick every
time it finds a stimulating
configuration.

 Rule table contains all such
configurations. A rule table defines
an algorithm.

 Rule space is very large.

z

z+1

z-1
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Simulation model of wasp buildingSimulation model of wasp building

 Most algorithms generate structureless shapes.

 But some produce "structured" architectures.

 Structured architectures:

- Usually modular
- Most complex patterns have large modules
- Produced by specific algorithms
- Convergence to similar shape in all runs
- Compact
- Take time to generate

Stimulating configurations corresponding
to different building stages must not overlap

84

GeneticGenetic algorithmalgorithm to explore to explore rulerule spacespace

Some of the characteristics of "structured" 
architectures can be formalized (graph associated
with the building process) and quantified.

Quantification is useful
to define a fitness 
function. Heuristic fitness
correlates well with
observers' notion of
structure. A GA has been
run with this fitness. 0
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