

```
Biological metaphors
```

Biological metaphors

* Scientific objective: modelling
* Technical objective: new engineering methods
- Strong points of these metaphors:
\rightarrow decentralization
\rightarrow parallelism
\rightarrow flexibility, adaptivity
\rightarrow "robustness" (failures)
\rightarrow auto-organization

Four ingredients of self-organization

- Positive Feedback
- Negative Feedback
- Amplification of Fluctuations - randomness
- Reliance on multiple interactions

Amplification of fluctuations and optimization

Ants collectively select the shorter path.

Amplification of fluctuations and "lock-in"

- The double-bridge experiment.
- On branch is almost ignored after some time.

Double bridge: model
\odot Probability of choosing branch A
$P_{A}=\frac{\left(k+A_{i}\right)^{n}}{\left(k+A_{i}\right)^{n}+\left(k+B_{i}\right)^{n}}=1-P_{B}$
i : number of ants crossing the bridge
A_{i} : number of ants having gone through branch A
$p_{\text {p }}$ plot

Properties of self-organization

- Creation of structures

๑ Nest, foraging trails, or social organization

* Changes resulting from the existence of multiple paths of development
๑ Non-coordinated \& coordinated phases
- Possible coexistence of multiple stable states
\odot Two equal food sources

Travelling salesperson and virtual ants

- Classical benchmarking problem for optimization methods

Travelling salesperson and virtual ants

- m agents, each one makes a tour
- memory of visited cities
$-d_{i j}=$ distance between city i and city j

- $\tau_{i j}=$ virtual pheromon on link (i, j)
- When in city i, the probability of going from city i to city j is proportional to $\left(\tau_{i j}\right)^{\alpha}\left(d_{i j}\right)^{-\alpha}$
- At the end of a tour of length L, each agent reinforces the links it went through with a quantity proportional to $1 / L$
- Virtual pheromon evaporates : $\tau \rightarrow(1-\rho) \tau$

Other applications

The same method may be applied to any allocation problem
\ddagger Traveling salesman problem
ϕ Quadratic assignment problem
\dagger Job-shop scheduling

+ Graph coloring
\oplus Vehicle scheduling

AS-TSP : Traveling salesman problem

	Best tour	Average	Std. Dev.
Simulated Annealing	422	459.8	25.1
Tabu search	420	420.6	1.5
AS-TSP	420	420.4	1.3

QAP: quadratic assignment problem

- Allocate n activities to n locations. $\pi()$: activity assigned to i.
- Find a permutation that minimizes a cost function by taking into account the flow of exchanges beetween activities

$$
\pi_{\text {opt }}=\arg \min _{\pi \in \Pi(n)} C(\pi) \quad C(\pi)=\sum_{i, j=1}^{n} d_{i j} f_{\pi(i) \pi(j)}
$$

	Nugent (7)	Nugent (12)	Nugent (15)	Nugent (20)	Nugent (30)	Elshafei (19)	Krarup (30)
SA	148	578	1150	2570	6128	17937024	89800
TS	148	578	1150	2570	6124	17212548	90090
GA	148	588	1160	2688	6784	1740584	108830
ES	148	598	1168	2654	6308	19600212	99880
SC	148	578	1150	2550	6154	17212548	89900
AS-QAP	148	578	1150	2598	$\mathbf{6 2 3 2}$	$\mathbf{1 8 1 2 2 8 5 0}$	92490
AS-LS	148	578	1150	2570	6146	17212548	89300
AS-SA	148	578	1150	2570	6128	17212548	88900

QAP: quadratic assignment problem

Potential Vectors

$$
d_{i}=\sum_{j=1}^{n} d_{i j} \quad f_{h}=\sum_{k=1}^{n} f_{h k} \quad E=\bar{d} \cdot \bar{f}^{T}
$$

- An initial solution is constructed using the minimax rule The reminding location with lowest potential receives the reminding activity with highest potential.
- The ant algorithm is applied: it goes through locations with increasing potential, with:
$\eta_{i j}=d_{i} \cdot f_{j}$
$\Delta \tau_{i j}^{k}=Q / C^{k}(t)$ if ant k chose allocation (i, j)

Dynamics

Robustness and flexibility

Many problems are by nature dynamic. Their formulation varies as time goes, either because the system's internal characteristics change, or because external conditions change.

- Variation time scale is essential. It is sometimes impossible to apply an exhaustive method. Optimization must be dynamic.

Robustness : A system is robust if it keeps functioning efficiently even if some of its constituent parts fail.

Flexibility : A système is said to be flexible if it can efficiently function when external conditions change.

- Variations may be so rapid that optimization becomes less important than fulfulling the task

Robustness and flexibility

Robustness : For example, an assembly line is robust if production continues when a machine fails. Robustness degree : How many machines may break down without (too) affecting production ?

Flexibility : an assembly line is flexible if it can react to changing demands. Degree of flexibility: What is the reaction time, and what amount of fluctuation can it tolerate?

Optimization with artificial ants

Why does it work at all?
Fundamental principle: reinforcement of partial solutions and global dissipation. This principle presuppose that the problem be structured (ex : ants perform well on structured instances of QAP).

- Other important principle: keep a distributed trace of past exploration. Optimization efficiency and reaction to changing conditions are improved, because of the distributed memory of alternate solutions

Similar approaches

Routing in telephone networks

Routing : Device that processes the next direction of a message at a node of the network

Messages should reach their destination
Time needed to go from the source to the destination must be kept minimal

* Mutual Information Maximization for Input

Clustering MIMIC (De Bonet et al. 1997)
(Characteristics of the trafic change constantly: routing must adapt

Neural networks

Population-based incremental learning PBIL
(Baluja \& Caruana 1995)

Bayesian Networks

Routing

- Switching nodes hold routing tables that direct messages to other nodes depending on their final destination.
- Routing tables are regularly updated by a centralized mechanism:
\rightarrow Requires centralization and increases traffic
\rightarrow Maladpated to large networks
\rightarrow Failure at the central controler spreads all over
the network
\rightarrow Communications networks are distributed,
spatially extented, dynamical and unexpecteed.

Ants in the network!

Ant agents are launched in the network.
An agent updates routing tables by considering its source as a destination.
ϕ "If you are going to my source, go first to the node I am coming from (if I am 'young' enough)
ϕ Or "Don't go there (if I am old)".
(It influence diminishes with "age".

* Agents are made artificially older at overload nodes.

Ants in the network!
Schoonderwoerd et al. (1996)

$$
r_{n, d}^{i}(t) \quad \begin{aligned}
& \text { Probability, at node } i, \text { when heading to } \\
& \text { node } d, \text { of choosing } n \text { as next node. }
\end{aligned}
$$

$r_{i-1, s}^{i}(t+1)=\frac{r_{i-1, s}^{i}(t)+\delta r}{1+\delta r}$
$r_{n, s}^{i}(t+1)=\frac{r_{n, s}^{i}(t)}{1+\delta r}, \quad n \neq i-1$
$\delta r=\frac{a}{T}+b \quad$ T: ant's age
$D=c \cdot e^{-d \cdot s} \quad$ D: delay;
S: remaining capacity of the node

Ants in the network

Example of network and of routing table.

Colony-level flexibility
in two ant species (Pheidole)
From division of labor to scheduling

Model

Probability of performing the task for a stimulus s :
$T_{\theta}(s)=\frac{s^{n}}{s^{n}+\theta^{n}}$

$$
T_{\theta}(s)=1-\mathrm{e}^{-s / \theta}
$$

$\mathbf{n}=\mathbf{2}$

$\theta_{\text {(task 1, major) }}=\mathbf{8}$$\quad$| $\rho=$ prob. of encountering an item |
| ---: |
| $P(N)=1-(1-\rho)^{N}=1-\mathrm{e}^{N \ln (1-\rho)}$ |

$\theta_{\text {(task 1, major) }}=8$
$\theta_{\text {(task 1, minor) }}=1$
$P_{\text {(active->inactive) }}=0.2$ (per time step)
stimulus $_{(\mathrm{t}+1)}=$ stimulus $_{(\mathrm{t})}+\left(1-\left(3 \quad \frac{\mathrm{~N}_{\text {(active) }}}{\mathrm{N}_{\text {(population) }}}\right) ~\right)$

Threshold reinforcement: application

Mail retrieval in a city:

sped thresholds cannot account for genes specialization in non-polymorphic species.

Although tasks are eventually completed when the system is perturbed, there may be an irreversible degradation of the system's performance: stimulus intensity remains high.

Threshold reinforcement: the more an agent
performs a task, the lower its response
threshold. New specialists can be generated in response to perturbations.

- Nagents

- City divided into zones
- Each agent has response thresholds for all zones
- Agent responds to demand from a zone when
stimulus exceeds threshold
Current working zone's threshold is reinforced, as well as neighboring zones' thresholds. All other thresholds decay
\square Specialization and robustness

Cemetery formation
in Messor sancta

Cemetery formation
in Messor sancta
An isolated item is more likely to be picked up by an unladen agent:

$$
P_{\mathrm{p}}=\left[\mathrm{k}_{1} /\left(\mathrm{k}_{1}+\mathrm{f}\right)\right]^{2}
$$

where $f=$ density of items in neighborhood

- A laden agent is more likely to drop an item nc... to other items:

$$
P_{d}=\left[f /\left(k_{2}+f\right)\right]^{2}
$$

Clustering in ants

From brood sorting to data analysis

- Artificial ants move around and pick up and drop "clients" according to how many similar clients there are in the
neighborhood.
neighborhood.
The measure of how similar two clients are is based on a natural distance for each of the attributes. For example, for
attributes such as marital st or gender, a simil arity value of 1 is assigned to pairs having the same value of the attribute,
and a value of 0 to pairs with different values. For age, the smaller the age. diff erenge, the smailer the age dafirere

Emergent clusters obtained and visualized.

Reaction-diffusion model of the royal chamber construction

$H(r, t)$ Pheromon concentration in r at time t
P quantity of active material
C density of laden termites
Φ laden termite entering flow
$T(x, y)=e^{-\left[\left(\left(x-x_{0}\right) / \lambda_{x}\right)^{2}+\left(\left(y-y_{0}\right) / \lambda_{y}\right)^{2}\right]}$ template
$\partial_{t} H=k_{2} P-k_{4} H+D_{H} \nabla^{2} H$
$\partial_{t} C=\Phi-k_{1} C+D_{C} \nabla^{2} C-\gamma \nabla(C \nabla H)-\nu \nabla(C \nabla T)$ $\partial_{t} P=k_{1} C-k_{2} P$

Model of Building in Social Wasps

- Agents move randomly on a 3D grid of sites.

An agent deposits a brick every time it finds a stimulating configuration.

- Rule table contains all such configurations. A rule table defines an algorithm.

- Rule space is very large.

Simulation model of wasp building

Most algorithms generate structureless shapes.

* But some produce "structured" architectures.
- Structured architectures:
- Usually modular
- Usually modular
- Most complex patterns have large modules
- Most complex patterns have larg
- Convergence to similar shape in all runs - Compact

Take time to generate
Stimulating configurations corresponding to different building stages must not overlap


```
Genetic algorithm to explore rule space
Some of the characteristics of "structured" architectures can be formalized (graph associated with the building process) and quantified.
Quantification is useful to define a fitness function. Heuristic fitness correlates well with
observers' notion of structure. A GA has been run with this fitness.
```


