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Identifying coincidences in Cross-verified database of notable
people

Abstract
This micro-study aims to apply and develop the knowledge gained in the Algorithmic Informa-

tion Theory classes in a practical way. More specifically, the main goal is to develop a proof of
concept related to the generation of unexpectedness and coincidence.

Problem
How to tell a story? What makes a story interesting? What is so fascinating about the

coincidences between Abraham Lincoln and John F. Kennedy? These are some of the main
questions that gave rise to the desire of studying and carrying out this work. One can investigate
whether some facts are very interesting and unexpected while others are not so much, and how
Kolmogorov Complexity and Algorithmic Information are related to these events.

Method
In order to explore the phenomenon of coincidence and unexpectedness related to complexity

and algorithmic information, the project uses a data set of notable people, A cross-verified database
of notable people [1], which contains some interesting information about these people, such as the
name; years of birth and death; along with the latitude and longitude of these places; domain
and main area; the logarithm of the sum of 5 criteria (number of hits, number of Wikipedia
editions, non-missing biographical information, length of pages and total number of external links);
and many other data. For this project in particular, the most important features are the ones
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mentioned above, since the goal is to create unexpected according to the place of birth and death
of two people, along with their popularity.

The project repository [2] consists of two main files, a Jupyter notebook with the main com-
putations, such as the data pre-processing and the loop to generate the unexpectedness, and a
Python file with all functions used in the project. To compute the unexpectedness and coinci-
dence for given an event, the fact that two famous people were born and died in close proximity,
the causal complexity must be large and the description complexity or Kolmogorov complexity
must be small. The difference between these two complexities and the drop in complexity gen-
erates unexpectedness, which makes the event surprising. The equations below summarize this
explanation:

Cw(s) = Cw(pb) + Cw(pd) + Cw(ab) + Cw(ab)

C(s) = C(l1 − l2) + C(l3 − l4) + C(P1) + C(P2)

U(s) = Cw(s)− C(s)

where s is the event, pb and pd are total population of the place of birth and death, respectively,
of the two considered people, ab and ad are the area of birth and death of these same places,
when considering the causal complexity. As for the description complexity, C(s), the difference
between the two places of birth, l1, l2, and death, l3, l4, take into account the geodesic distance.
The simplicity of person P1 and person P2 are calculated considering the popularity of famous
people from the same area, who are also dead. The formula is as follows:

S(p) =
log2(pf )

log2(p)

where S is the simplicity, pf is the famous person and p is the person in question. The generation
complexity of each person is not included in the equations, because it is already in the context,
so it is available for free.

In this sense, the people present in the preprocessed data set are iterated to find the unexpect-
edness among them.

Results
As for the results, after sorting people by popularity, some interesting coincidences were found.

To filter the unexpectedness, a threshold of 70 was considered to include only the most surprising
coincidences. Some interesting results:

• Marilyn Monroe and Frank Sinatra

• Both musicians

• Born in Los Angeles, California - United States and Hoboken, New Jersey - United States

• Both died in Los Angeles, California - United States

In this instance, the unexpected was due to the fact the proximity within the places of the
death and the simplicity of both musicians, due to their popularity.
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Discussion
In conclusion, the micro-study allowed to prove the fact that, when there is a complexity drop

between generation complexity and description complexity, some unexpectedness and coincidence
might be generated. Considering the implementation for the study, before sorting the people
according to their popularity, the results were not very interesting, since there the people were
not very known, even if they were born or died in the vicinity. Even after sorting, computing each
pair in a large dataset takes a lot of time, and a more powerful GPU might be needed to get all
the results.

If one wants to see some pertinent results considering only the most popular people, an alter-
native is to take only the first five or ten people in the data set and compare their unexpectedness
results. In addition, another improvement to obtain more accurate results would be to compute the
generation complexity for the village where the person was born or died instead of the complexity
of the whole country.

Bibliography
[1] A cross-verified database of notable people https://doi.org/10.1038/s41597-022-01369-4
[2] Github Micro-study https://github.com/liadsantos/ai225-mini-project-coincidences

3

5

https://doi.org/10.1038/s41597-022-01369-4
https://github.com/liadsantos/ai225-mini-project-coincidences


6



June, 2023

IA225

Algorithmic Information
& Artificial Intelligence

Micro-study

teaching.dessalles.fr/FCI

Name: Louis CAUBET

Using Kolmogorov complexity in procedural generation

Abstract
Procedural generation is a computer method that create data using a generator and an input.
This is most often used in games where there is a need for complexity in pattern, something that
can be measured with kolmogorov complexity. In this paper we will analyze the utility of using
kolmogorov complexity to classifies resulting output

Problem
Procedural generation generates random images with certain constraints. This sometime results
in image that does not appear "random" for the human eye. This randomness can be computed
using an approximation of kolmogorov complexity and images can then be ranked using this same
complexity. We will analyze an algorithm, the WFC and try to apply constraints on the algorithm
and resulting output using kolmogorov complexity.
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Method
For this problem we will utilize an algorithm developed for procedural generation and inspired by
quantum physics, the Wave Function Collapse (WFC). The WFC algorithm goes as follow:

1. Read the input bitmap and count NxN patterns.

2. Create an array with the dimensions of the output (called "wave" in the source). Each
element of this array represents a state of an NxN region in the output. A state of an
NxN region is a superposition of NxN patterns of the input with boolean coefficients (so a
state of a pixel in the output is a superposition of input colors with real coefficients). False
coefficient means that the corresponding pattern is forbidden, true coefficient means that
the corresponding pattern is not yet forbidden.

3. Initialize the wave in the completely unobserved state, i.e. with all the boolean coefficients
being true.

4. Repeat the following steps:

(a) Observation:

i. Find a wave element with the minimal nonzero entropy. If there is no such elements
(if all elements have zero or undefined entropy) then break the cycle (4) and go to
step (5).

ii. Collapse this element into a definite state according to its coefficients and the
distribution of NxN patterns in the input.

(b) Propagation: propagate information gained on the previous observation step.

5. By now all the wave elements are either in a completely observed state (all the coefficients
except one being zero) or in the contradictory state (all the coefficients being zero). In the
first case return the output. In the second case finish the work without returning anything.

In this paper we will use patterns that are 2x2 pixels as to speed the algorithm and study
on larger set of output. One thing to note is that the WFC algorithm is assured to create a
valid image and error can happen because this problem is NP-hard and creating a somewhat fast
solution requires us to accept a chance of error in output.

The output generated through the algorithm will be random but will follow two properties
given:

1. The output should contain only those NxN patterns of pixels that are present in the input.

2. Distribution of NxN patterns in the input should be similar to the distribution of NxN
patterns over a sufficiently large number of outputs. In other words, probability to meet a
particular pattern in the output should be close to the density of such patterns in the input.

This means we can generate multiple image and compare their respective complexity to chose
which one is better in the context of use.

For this endeavor we will need a way to compare each image complexity. To approximate
kolmogorov complexity on an image we can compress it using a compressor. The compressor c
needs to be normal:

c(x, x) = c(x)
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Least complex image Most complex image

Figure 1: Two images generated using the same input with different Kolmogorov complexity

the kolmogorov complexity of the concatenation of two identical image should be the kolmogorov
complexity of the single image.

The LZMA compressor respect this property and we will use it for the rest of this study. We
then define the NCD distance which represent the similarity of two image:

NCD(x, y) =
C(x, y)−min(C(x), C(y)

max(C(x), C(y))

We can then compare two image and computes how different they are using their kolmogorov
complexity but we still needs a way to compare their complexity and rank it. For this we will use
ICR:

ICR(x, y) =
NCD(x, y)× C(y)

C(x)

We then define a relation

R(x, y) = xRy ⇐⇒ ICR(y, x) ≤ ICR(x, y)

This relation is a partial order that will allows us to rank image based on their perceived
complexity. ICR has been tested on large dataset and is a good way to rank image based on
perceived complexity.

We can use this ranking to determine which image to display to end user based on complexity.
Most of the time we will display the most complex that appears as the most random for the human
eye.

We then test another heuristic for pattern choosing in the algorithm using kolmogorov com-
plexity ranking established earlier. We want to know if this heuristic can helps to change the
complexity of the output image.

Results

Table 1: mean rank in ordered list

input Normal heuristic Kolmogorov heuristic
normal image 99.03 99.97
augmented image 102.63 96.37
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200 images were produced using the same input. 100 with the basic heuristic and 100 with the
kolmogorov heuristic described in the method section. they were then ranked based on complexity.
Figure 1 is an example of the efficiency of such ranking. The experience was then repeated on an
augmented image that used the same image but with a "blank" pattern added.

normal input augmented input

Figure 2: different input

The lower the rank, the higher the complexity. The kolmogorov heuristic does not seems
to be efficient in computing more complex output in either case but this could be because of
the pattern size of 2x2 chosen for simplicity in computing. Choosing a 3x3 pattern size could
result in a significative improvement if studied. The image might also need to be different to
improve the impact of the augmented image. The augmented image was tested to prove that
the kolmogorov heuristic could improve image if there was an added "blank" pattern that could
reduce the frequency of more complex pattern.

Discussion
The ranking method of complexity works well with different type of input and a human can clearly
see the difference between the first and last image of each ranking. The kolmogorov heuristic does
not work as intended on augmented data and this might be because of choice discussed in the
result section but this might also not work as an heuristic. The kolmogorov complexity of an image
appears important in procedural generation where the perception of complexity in an image is
crucial for the end user. A complex image appears random for a player or a painting enthusiast and
researcher are becoming more and more interested in kolmogorov complexity applied to procedural
generation.

Bibliography
Why Oatmeal is Cheap: Kolmogorov Complexity and Procedural Generation, Younès Rabii,
Michael Cook https://arxiv.org/abs/2305.02131
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Applications and Limits of Zipf’s Law

Abstract
This report tackles the applications of Zipf’s Law on different corpuses and datasets. Its

purpose is testing the validity of Zipf’s Law and using this Law to make predictions on word
ranks and frequencies. We will be comparing complexities and results to see if we can draw
conclusions.

Problem
The distribution of word frequencies in natural language has been a topic of great interest

in algorithmic and AI studies. One particular law that has gained my attention is Zipf's Law,
which describes a consistent relationship between the rank of a word and its frequency in a
given corpus. While Zipf's Law has been observed to hold in various linguistic datasets, I am
particularly interested in exploring the extent to which this law can be applied and its
predictive power across different corpuses and datasets. It remains a captivating area of
investigation to determine the reliability and generalizability of Zipf's Law in various
contexts.

This research paper aims to address the problem of determining the validity of Zipf's Law and
exploring its potential applications in predicting word ranks and frequencies. Understanding
the underlying patterns and complexities of word distributions can have significant
implications in various fields, such as natural language processing, information retrieval,
recommender systems and text mining. If Zipf's Law is found to be consistently valid across
different corpuses, it could provide a valuable tool for predicting and analyzing word
frequencies.
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Method
To address the problem I presented above, I used the code Zipf.py provided in the labs to

test Zipf’s Law on random corpuses (books in my case) and I created a Python program which
has the purpose of analyzing texts and corpuses. The main idea behind the program that I
created is to tokenize the given corpus after cleaning the text and create a dictionary that
stores words with their respective frequencies. I then compare the complexities of some words
across different corpuses and the Web. Finally, using Zipf’s Law, I aim to predict word
frequencies and ranks and compare them to their actual rank or frequency in each corpus.

For the purpose of this research, I used three different books downloaded directly from
https://www.gutenberg.org/. The three books are: The book of The Cheese, by T. W. Reid,
Escape from east Tennessee to the federal lines, by R. A. Ragan, and The human species, by
Armand De Quatrefages. I also used the Google Search Engine API to retrieve word
frequencies from the web to later compare the complexities.

The first step in my Python Program involves creating the function get_word_freq that
returns the dictionary of the words with their respective frequencies. To achieve that, I first
created a function clean_and_tokenize that cleans the text from all symbols and unnecessary
characters and splits the text on spaces. Therefore, this function will output a list containing
all the words of the corpus. I then use this list as an argument for the function get_word_freq
that iterates over the list while counting the occurrences of each word and storing it in a
dictionary. These two functions also have an optional argument remove_stopwords which can
be set to True so we can see the most relevant words for example after removing stopwords.
This is useful to capture context since in most english corpuses for example the most frequent
words are “the”, “of” and “and”. I also created the function get_web_frequencies which uses
the Google API to retrieve word frequencies from the web. I used my own generated API key
for the purpose of this project.

The second step is to calculate the complexities of the words using the formula
C=log2(1/f). I created the function convert_frequencies_to_complexities to do this task.

The last step in my method is to predict the word ranks and frequencies using Zipf’s Law.
The formula of the Law is: r(w)=k/f(w) where w refers to a certain word and r(w) refers to its
rank and f(w) refers to its frequency. Given this Law, if we have the word frequencies for
example we will be able to predict their rank in the corpus by just applying the formula. The
same applies if we want to predict the frequency of a word. Let’s say we know that a word is
the second most frequent word in a certain corpus, we can therefore calculate its frequency by
only applying Zipf’s Law without having to count its occurrences in the corpus. In this case,
having the value of k and for r(w)=2, we get the value of f(w).

Therefore, we have to find the value of k for each corpus. My method consists of taking
the most frequent word in a certain corpus which has the rank of 1 and using its rank and
frequency to get an estimate of k for this particular corpus. Then, I use this value of k and
apply it on all the different words of the corpus.

Results
Using the program Zipf.py provided in the Lab, I tested Zipf’s Law on the three different

books that I mentioned above. I got the following results:
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The figures show the constant relation between word frequencies and word ranks on a
logarithmic scale.

Using the program that I created, I tokenized and extracted the dictionary of word frequencies
from each corpus. I then calculated the complexities for the most 5 frequent words in each
corpus and compared the complexities of these words with their complexities after retrieving
their frequencies from the web. I found that the most frequent words had lesser values in
terms of complexity than the most frequent ones which was also consistent from the results
from the web. However, the complexities of the words on the web are always relatively higher
than those in a smaller corpus.

I then used my program to predict word ranks and word frequencies of the three different
corpuses and compare them with their actual values. I got the following results:

● Predicting word ranks for the most 50 frequent words:

● Predicting word frequencies for the most 50 frequent words:

Discussion
As expected, after running Zipf.py on the three different books, I found that Zipf’s Law

was satisfied. This proves that Zipf’s Law remains consistent on normal language corpuses.

Regarding word complexities, it is expected that the complexity for more frequent words
would be relatively small due to the inverse relation between complexity and frequency.
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However, on larger corpuses such as the Web and Google, the complexities of words can be
higher because of the larger nature of the corpus.

In terms of predicting word ranks and frequencies, I got consistent results on each corpus
which implies the importance of Zipf’s Law. Using Zipf’s Law, we can easily capture the
context of a document or corpus without having to do any machine learning. By simply
knowing the relation between word ranks and frequencies, we can directly know if a word is
frequent in a certain corpus which can be useful in applications such as recommender
systems. An important thing to note is that when estimating the value of k for each corpus, I
only relied on the most frequent word in the corpus. This can be problematic especially
considering the fact that after examining Zipf’s Law on the three different books, we can see
that the Law is most consistent with the most frequent and less frequent words. To get a better
estimate of k and ultimately better predictions on a certain corpus, we should try different
values of k by using words in the middle of the corpus which most probably yields a better
representation of the corpus.

Bibliography
[1] Measuring Information through compression
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[2] Project Gutenberg https://www.gutenberg.org/
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Abstract

In this research, we leverage concepts of Normalized Information Distance (NID),
Normalized Compression Distance (NCD), and Normalized Google Distance (NGD) based
on Kolmogorov complexity, to build a word predictor using the GPT-2 language model. The
goal is to predict suitable words to complete given incomplete phrases. Challenges arise in
dealing with the computation of NGD for vast vocabularies, restrictions in utilizing Google
API, and handling high-frequency closed-class words. The model generally aligns well with
expected predictions, however, it struggles with high-frequency, closed-class words. Also, the
response time of the model is not suitable for real-time applications. Despite these
limitations, our study reveals the impressive capacity for contextual understanding and
suggests future research for better model evaluation.

Problem

Researchers like Bennett, Vitanyi, Cilibrasi, and others have made important contributions to
using Kolmogorov complexity for classification and measuring the shared information
between objects. Their work has yielded promising results in different fields, including
natural language.

The idea behind their approach is to compare pairs of objects and determine how much
information they have in common. This is done by assigning a distance value that reflects the
similarity between binary representations of the objects. If two objects share a lot of common
information, their distance is small, indicating they are close. Conversely, if two objects have
less shared information, their distance is larger, suggesting they are more independent [2].

For instance, when comparing two identical words, their distance is zero because they have
all the information in common. On the other hand, two completely unrelated words would
have a distance close to 1 in a normalized scale of distances between 0 and 1. The
researchers' goal is to measure the similarity or dissimilarity between objects by quantifying
the amount of shared information. This provides a way to classify objects based on their
common characteristics, regardless of the specific domain they belong to.

In this context, the researchers introduced three metrics: NID (Normalized Information
Distance), NCD (Normalized Compression Distance), and NGD (Normalized Google
Distance). These approaches are aligned with Kolmogorov’s concept of defining a numerical
measure of information content of words, i.e. a measure of their randomness.

The objective of this research is to explore the effectiveness of utilizing specific distance
measures in the prediction of suitable words to complete given incomplete phrases. To
achieve this, an interface has been developed in Python. This interface accepts an incomplete
sentence as input and feeds it into a pre-trained language model, GPT-2. The model is then
asked to produce a certain number of word predictions, as specified by the user, to complete
the sentence. Subsequent calculations are performed using Normalized Google Distance
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(NGD) and Normalized Compression Distance (NCD) measures to determine the "distance"
between the input phrase and each of the generated predictions. Following these calculations,
the system presents the top 5 predictions.

Method

This study is based on the notions of Normalized Information Distance (NID) which
measures the normalized difference in information content between two objects. NID is based
on conditional complexity K(x|y) and measures the amount of information contained in x that
is not present in y.

Bennet and al. defined the information distance between two words x and y as the size of the
shortest program which maps x to y and y to x. An alternative definition can be given as
follows:

𝐼𝐷'(𝑥, 𝑦) =  𝑚𝑎𝑥{𝐾(𝑥|𝑦),  𝐾(𝑦|𝑥)} (1)

The equation 1 states that the shortest program which computes x from y takes into account
all similarities between x and y. By using NID as a distance measure, it is possible to define a
metric space where the distance between objects is determined by their information content.
Therefore, NID satisfies the metric axioms:

(𝑀1) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥 ∈  𝑋,  𝑑(𝑥, 𝑥) =  0                                                                   (𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦)
(𝑀2) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥,  𝑦 ∈ 𝑋,  𝑖𝑓 𝑥 ≠ 𝑦,  𝑡ℎ𝑒𝑛 𝑑(𝑥, 𝑦) ≠ 0
(𝑀3) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥,  𝑦 ∈ 𝑋,  𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)                                                     (𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦)
(𝑀4) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥,  𝑦,  𝑧 ∈ 𝑋,  𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) +  𝑑(𝑧, 𝑦)                          (𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦)

From the axioms it is possible to develop the Normalized Information Distance as formulated
in the equation 2.

𝑁𝐼𝐷(𝑥, 𝑦) =  𝐾(𝑥,𝑦) − 𝑚𝑖𝑛[𝐾(𝑥), 𝐾(𝑦)]
𝑚𝑎𝑥[𝐾(𝑥),𝐾(𝑦)]

(2)

The NID remains an abstract notion, since Kolmogorov complexity is not computable [1].
Consequently, NID was proposed as an ideal distance which can be approximated by
replacing the Kolmogorov function K by computable compression algorithms. Vitanyi
proposed two other metrics : Normalized Compression Distance (NCD) and Normalized
Google Distance (NGD).

NCD is obtained by replacing K by a compressor such as “zip” as shown in equation 3.

𝑁𝐶𝐷(𝑥, 𝑦) =  𝑍(𝑥,𝑦) − 𝑚𝑖𝑛[𝑍(𝑥), 𝑍(𝑦)]
𝑚𝑎𝑥[𝑍(𝑥), 𝑍(𝑦)]

(3)
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NGD is obtained by replacing K by log2(1/f(x)), where f(x) is the observed frequency of x on
the Web, or by log2(N/g(x)), where N is the corresponding total number of indexed pages and
g(x) denotes the number of pages containing x. The equation 4 shows the NGD.

𝑁𝐺𝐷(𝑥, 𝑦) =  𝑚𝑎𝑥[𝑙𝑜𝑔(𝑓(𝑥)), 𝑙𝑜𝑔(𝑓(𝑦))] − 𝑙𝑜𝑔(𝑓(𝑥,𝑦))
𝑙𝑜𝑔 𝑁 − 𝑚𝑖𝑛[𝑙𝑜𝑔(𝑓(𝑥)), 𝑙𝑜𝑔(𝑓(𝑦))]

(4)

Pre-processing:

The initial idea of applying NGD directly to make predictions had limitations due to the
computational feasibility of calculating NGD for each word in a vocabulary with several
words. To overcome this challenge, the GPT-2 model was utilized to make predictions and
the NGD was applied to rank the predictions, returning the “best” 5 words to complete a
phrase given by the user.

The GPT-2 model is a powerful language model that has been trained on a large corpus of
text data from the internet. It has the ability to generate coherent and contextually relevant
text based on the patterns it has learned from the training data. Despite being a powerful tool,
the GPT-2 was doing identical predictions for simple sentences with contextual information.
For instance, the phrase: “I’m tired, I need…” received the word “help” several times. As the
main objective was to provide a word predictor with different word suggestions, a
pre-treatment of the information needed to be done before the computation of the distances in
order to avoid multiple identical predictions.

An additional challenge we encountered involved conducting searches on Google. Ideally,
using Google's API is the most appropriate method to extract search results from Google.
However, this API has very limited quotas. To avoid problems with these limits, two other
libraries were experimented: BeautifulSoup and Selenium. However, Google's built-in
measures to prevent automated scraping resulted in inconsistent search result numbers when
executing the script. Therefore, the decision was made to utilize the Google API, even with
its limitations.

Another issue arose in connection to how the input phrase was queried on the search engine.
Without enclosing the search term in quotation marks, the engine returned results containing
all words from the phrase, but not in the specified order. By incorporating quotation marks,
phrases like "I'm tired" only returned results with all words in the exact stated order.

Method evaluation

After the pre-processing, two approaches were applied. The first approach consists in
calculating the NGD between the entire input phrase and each word predicted (without any
tokenization) and the second approach consists in calculating the mean NCD in an analogous
way.
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To test the different methods, some phrases were used as inputs for the system, and the
predictions it made were collected for review. These phrases covered a wide variety of
common situations and topics to check how flexible the system is. The phrases used and the
expected predictions were:

“I am tired, I need…” (sleep)
“Last week I went to fast foods everyday, I love…” (eat/hamburguer)
“I play football every week. Football is my…” (passion/hobby/favorite)
“There is a movie showing, want to go with…” (me?/ us?)
“Spiderman is a…” (superhero/ hero)

Results

The table 1 shows for each phrase tested the predictions from GPT-2, the rank of words using
NGD and the rank using NCD. For a posterior comparison, the word predictions from an
iPhone 11 keyboard were noted. In the third topic of the References section is provided a link
with some images from the prompt interface with the words predicted by GPT-2 and the
suggestions based in NGD and NCD.

Table 1 - Input phrases, predictions and suggestions.

GPT-2
Predictions

NGD ranking NCD ranking iPhone
keyboard

“I’m tired, I
need…”

['another', 'rest',
'to', 'more', 'a',
'you', 'your',
'some', 'sleep',
'help']

1 - 'rest';
2 - 'sleep';
3 - 'another';
4 - 'some';
5 - 'more'

1 - 'another';
2 - 'rest';
3 - 'to';
4 - 'more';
5 - 'a'

1 - to;
2 - a;
3 - some

“Last week I
went to fast

foods
everyday, I
love…”

['it', 'my', 'to',
'their', 'burgers',
'fast', 'being',
'food', 'the',
'them']

1 - 'burgers';
2 - 'fast';
3 - 'food';
4 - 'being';
5 - 'them'

1 - 'fast';
2 - 'food';
3 - 'it';
4 - 'my';
5 - 'to'

1 - it;
2 - the;
3 -❤

“I play football
every week.
Football is
my…”

['life', 'team',
'highlight',
'hobby',
'friends', 'body',
'number',
'passion', 'go',
'big']

1 - 'hobby';
2 - 'passion';
3 - 'highlight';
4 - 'friends';
5 - 'team'

1 - 'life';
2 - 'team';
3 - 'highlight';
4 - 'hobby';
5 - 'friends'

1 - first;
2 - favorite;
3 - best

“There is a
movie

showing, want
to go with…”

['with,', 'TR',
'me', 'it', 'them',
'with?"', 'a', 'the',
'that', 'some']

1 - 'with,';
2 - 'them';
3 - 'some';
4 - 'that';
5 - 'it'

1 - 'with,';
2 - 'with?"';
3 - 'that';
4 - 'TR';
5 - 'me'

1 - the;
2 - us;
3 - a
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“Spiderman is
a…”

['big', 'member',
'superhero',
'real', 'master',
'monster',
'good', 'super',
'fantastic',
'former']

1 - 'superhero';
2 - 'fantastic';
3 - 'former';
4 - 'monster';
5 - 'master'

1 - 'big';
2 - 'member';
3 - 'superhero';
4 - 'real';
5 - 'master'

1 - cute;
2 - nice;
3 - cool

Source: Produced by the author.

Discussion

We can observe that, with the exception of the fourth phrase, the NGD ranking aligns with
our expected predictions. NCD also performs well but omits some significant words, such as
'passion' in the third phrase, 'burgers' in the second, and 'sleep' in the first. The iPhone
keyboard prediction is less successful in these instances.

However, when examining the fourth input phrase, NCD and the iPhone keyboard provided
superior predictions. NCD included "us" among its top predictions, while the iPhone
keyboard suggested "me". In this case, the words predicted by the GPT-2 model are largely
functional or "closed-class" words. This class includes pronouns, determiners, prepositions,
and conjunctions, which are infrequently updated with new words—hence, they are "closed."
These words typically serve grammatical or structural functions and are common in a variety
of contexts, thereby reducing their distinctiveness. This high frequency and diversity block
the specificity of the NGD measure, making it challenging to effectively rank these words.

Another issue lies not with the NGD function, but with the predictions generated by the
GPT-2 model. The GPT-2 model occasionally produced predictions that did not align with the
expected outcomes. For instance, the phrase "Spiderman is a…" might result in predictions
such as: powerful; unique; new; small; serious; good; Super; mutant; prominent; p—without
any mention of the word "hero". However, it does demonstrate the model's capability to
understand the context of the words since GPT-2 consistently returns "hero" or "superhero"
for the input phrase: "Dr. Octopus is a villain. Spiderman is a…".

It's important to note that we need more sophisticated methods for evaluating the model's
performance. Testing a larger number of input phrases with a more extensive vocabulary of
expected predictions of similar meanings would allow the computation of more
comprehensive metrics, such as precision, recall, or F1-score. But as the Google API, the
only method found to provide consistent search results, imposes a daily quota, such extensive
testing is not feasible.

Another significant point is the unsuitability of this model for real-time applications. In
real-world scenarios where people need to compose messages quickly, the model's average
response time of 3 minutes is impractical for regular conversation in a messaging application.
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In conclusion, while the Normalized Google Distance (NGD) ranking generally aligns well
with the expected predictions, it falters when dealing with high-frequency, closed-class
words. In addition, the model is limited by the GPT-2 predictions that do not always align
with the ground truth. More sophisticated evaluation methods are required for better model
assessment and the response time renders it unsuitable for real-time applications such as
instant messaging. Despite its shortcomings, the model still demonstrates an impressive
capacity for contextual understanding.
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Kolmogorov Complexity in CNN’s kernels

Abstract
This experiment aimed to investigate if Convolutional Neural Networks, after being trained, are
compressible. To this we applied compression and pruning techniques and verified that, without
a significant loss in accuracy, a CNN can be significantly compressed and their kernel matrices
have visually appealing patterns.

Problem
"Machine Learning is compression". The objective of this work is to put in practice this phrase
by studying the compressibility of a Convolutional Neural Network. As seen in the course, we
can obtain a higher bound on Kolmogorov complexity by compressing the model parameters [2].
In the context of neural networks, complexity can provide insights into the minimum description
length required to represent the model’s parameters. This experiment aims to explore the rela-
tionship between model compression, achieved through statistical learning, weight pruning, and
the resulting bounds on the Kolmogorov complexity. Particularly, we focus on the kernel weights
of a 2-layer convolutional neural network. We would like to know if by adjusting a model to the
data, the kernel weights become compressible, which means they can have a simpler representation.

This can be considered useful, as deep learning models, particularly CNNs, often exhibit high
memory requirements due to their large number of parameters. This can limit their deployment
on resource constrained devices, such as mobile phones and embedded systems. representation of
the network.
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Method
1. Dataset Selection: A suitable dataset was chosen to train a CNN model. In this experi-

ment, the MNIST dataset consisting of 60,000 small square 28×28 pixel gray-scale images
of handwritten single digits from 0 to 9[3], was used. We choose this dataset as it can be
considered one of the simplest machine learning vision tasks.

2. Model: The architecture used was a standard convolutional network with multiple layers,
such as convolutional, pooling, and fully connected layers. The convolutional layers consisted
of convolutions of size 5x5. We used PyTorch [4] framework for implementing the model
and the training algorithm.

3. Compression: Once the CNN model was trained, the compression was divided in two phases:
pruning and lossless compression. First, the pruning technique was applied to compress
the model. The pruning process involved identifying and removing unimportant weights
according to threshold hyper-parameter value. Then, the pruned weights were losslessly
compressed using Zlib [1].

4. Compressed Model Evaluation: The accuracy of the compressed model was evaluated on
a validation set from the MNIST dataset. The evaluation metrics used included accuracy,
and negative log likelihood loss. These metrics were compared with those of the original,
uncompressed model to assess the impact of compression on performance. In addition, the
kernel weights are also evaluated in the search of any patterns and to assess the state of the
convolutional layers

5. Comparison with Original Model: The results obtained from the pruned model were com-
pared with the original model to measure the compression achieved and determine any
potential loss in accuracy.

Results
The experiment yielded results that showcased the successful compression of the CNN model using
the pruning technique and its relationship to Kolmogorov complexity:

1. Original Model Accuracy: 97.6%

2. Compressed Model Accuracy: 97.1%

3. Compression Ratio for first layer: 35%

4. Compression Ratio for second layer: 220%

The values in bytes for the convolutional layers before training and pruning are the following

1. Layer 1 compressed size: 989 bytes.

2. Layer 1 uncompressed size: 1011 bytes.

3. Layer 2 Compressed size: 18578 bytes.

4. Layer 2 Uncompressed size: 20011 bytes.

2
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After training the model and applying weight pruning:

1. Layer 1 compressed size: 749 bytes.

2. Layer 2 compressed size: 9095 byes.

The second layer reduced its size by more than two compared to the original model, indicating
a significant reduction in the number of parameters. Despite this reduction, the pruned model’s
accuracy decreased only slightly by 0.5%.

It’s important to note that if we try to compress an untrained model - that is convolutional
kernels that are randomly initialised from a normal distribution - we obtain virtually zero com-
pression. Which is what’s expected from random data.

These results demonstrate the effectiveness of the pruning technique in compressing CNN
models while maintaining accuracy. The compressed models enable a more succinct representation
of the network’s parameters, highlighting their potential for reducing complexity in deep learning
models.

Figure 1: Evolution of the negative log likelihood on the training (per batch) and test datasets

Image 1 shows the evolution of the errors on both datasets. We observe that the model succeeds
in classifying the numbers as the loss converges to a small value.

We observe the results of the pruning technique on image 2. The percentage of zero entries is
40%.

The first layer in the convolutional kernels (figure 3) can be less compressed and this is verified
when comparing with the kernels of the second layer. However, there is still a locality principle
which enables the reported compression level.

Image 5 is an interesting kernel. As we can observe, most of its entries are zero. In addition,
values in the left are negative and on the right are positive. All of this indicates that a simple
representation of the convolutional kernel exists and indeed it is verified in the compression level
of the second layer as observed in the results section .

In both figure 4 and 3 we can visually spot many clear patterns in the kernel configurations.
For example we observe that proximate entries have similar values. This fact is exploited by the
compression algorithms of Zlib [1].
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Figure 2: Histogram of values in the convolutional kernels on the compressed model.

Figure 3: First layer convolutional kernels. Redder pixels means more positive values, white zero
entries and bluer pixels more negative values.

Discussion
The experiment successfully explored the compression of CNN kernel weights using a pruning
technique and its relationship to Kolmogorov complexity. By compressing the model, we found a
higher bound on complexity. And by showing that the model after training is compressible, we
indicated a more concise representation of the network. Moreover, the results demonstrated that
pruning can significantly reduce the model’s complexity while incurring only a marginal loss in
accuracy. This has implications for understanding the minimum description length required to
represent neural network parameters. Future work could involve further analysis of Kolmogorov
complexity in relation to different pruning techniques and evaluating the resulting model in more
complex datasets such as ImageNet.

Indeed, knowledge is compression. Through gradient descent, the machine learning algorithm
has found a structure that succeeds in extracting relevant features from the handwritten images
by using convolutional kernels. We expect this kernels to be rather simple, to represent a simple
feature, not to appear as random data. As we have observed in the coloured representation of the
kernels. We intuitively observe certain patters, be it sparse or with a clustered distribution: very
positive values and very negative values are each grouped together in a certain way.

Its important to note that what we show here is that there are CNN models that successfully
solves a task, with an arbitrary degree of accuracy, which are compressible. Thus, the learning
algorithm, starting with a random incompressible model, perfroms gradient descent and reaches
a model that, with the aid of weight pruning, is compressible and recognises numbers.
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Figure 4: Second layer convolutional kernels.

Figure 5: Selected kernel of the second layer.
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